一种新颖的深度因果图建模及其故障诊断方法
为了实现复杂工业过程故障检测和诊断一体化建模,提出了一种新颖的深度因果图建模方法.首先,利用循环神经网络建立深度因果图模型,将Group Lasso稀疏惩罚项引入到模型训练中,自动地检测过程变量间的因果关系.其次,利用模型学习到的条件概率预测模型对每个变量建立监测指标,并融合得到综合指标进行整体工业过程故障检测.一旦检测到故障,对故障样本构建变量贡献度指标,隔离故障相关变量,并通过深度因果图模型的局部因果有向图诊断故障根源,辨识故障传播路径.最后,通过田纳西-伊斯曼过程进行仿真验证,实验结果验证了所提方法的有效性....
Saved in:
Published in | 自动化学报 Vol. 48; no. 6; pp. 1616 - 1624 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
北京科技大学自动化学院工业过程知识自动化教育部重点实验室 北京100083
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 |
DOI | 10.16383/j.aas.c200996 |
Cover
Summary: | 为了实现复杂工业过程故障检测和诊断一体化建模,提出了一种新颖的深度因果图建模方法.首先,利用循环神经网络建立深度因果图模型,将Group Lasso稀疏惩罚项引入到模型训练中,自动地检测过程变量间的因果关系.其次,利用模型学习到的条件概率预测模型对每个变量建立监测指标,并融合得到综合指标进行整体工业过程故障检测.一旦检测到故障,对故障样本构建变量贡献度指标,隔离故障相关变量,并通过深度因果图模型的局部因果有向图诊断故障根源,辨识故障传播路径.最后,通过田纳西-伊斯曼过程进行仿真验证,实验结果验证了所提方法的有效性. |
---|---|
ISSN: | 0254-4156 |
DOI: | 10.16383/j.aas.c200996 |