基于KPCA-APSO-LSSV M的充填管道磨损风险预测
TD853.34; 为提高充填管道磨损风险的预测精度,构建基于核主成分分析(KPCA)和自适应粒子群算法(APSO)优化的最小二乘支持向量机(LSSVM)磨损风险预测模型.首先通过KPCA对数据进行特征提取和降维处理,获取影响管道磨损的主要因素,然后应用LSSVM建立磨损风险预测模型,同时利用APSO算法对模型参数进行优化.最后,以黄陵县矿区为例,分析选取12种影响因素,建立充填管道磨损风险指标体系,借助MATLAB进行仿真训练与预测,并对预测结果进行对比分析.结果表明:KPCA-APSO-LSSVM模型与其他模型相比具有更高的预测精度及更强的泛化能力,是一种更为有效的磨损风险预测方法....
Saved in:
Published in | 有色金属工程 Vol. 11; no. 3; pp. 96 - 106 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
西安建筑科技大学,西安710055
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2095-1744 |
DOI | 10.3969/j.issn.2095-1744.2021.03.015 |
Cover
Summary: | TD853.34; 为提高充填管道磨损风险的预测精度,构建基于核主成分分析(KPCA)和自适应粒子群算法(APSO)优化的最小二乘支持向量机(LSSVM)磨损风险预测模型.首先通过KPCA对数据进行特征提取和降维处理,获取影响管道磨损的主要因素,然后应用LSSVM建立磨损风险预测模型,同时利用APSO算法对模型参数进行优化.最后,以黄陵县矿区为例,分析选取12种影响因素,建立充填管道磨损风险指标体系,借助MATLAB进行仿真训练与预测,并对预测结果进行对比分析.结果表明:KPCA-APSO-LSSVM模型与其他模型相比具有更高的预测精度及更强的泛化能力,是一种更为有效的磨损风险预测方法. |
---|---|
ISSN: | 2095-1744 |
DOI: | 10.3969/j.issn.2095-1744.2021.03.015 |