基于随机森林的综放工作面煤矸图像识别

TD672; 针对目前综放工作面煤矸图像识别方法存在的参数调节难度高、预测准确率低、易过拟合等问题,提出了一种基于随机森林(RF)算法的综放工作面煤矸图像识别方法.以担水沟煤矿6203综放工作面为工程背景,采集放煤口的煤矸图像并对其进行裁剪、灰度转化、对比度增强、图像滤波预处理;采用灰度-梯度共生矩阵提取出15个煤矸图像纹理特征;采用RF算法对15个煤矸纹理特征的重要性进行排序,并选取前5个实现降维处理,分析降维前后RF算法对煤矸图像的识别效果.结果 表明,在决策树个数为150、采用log2M+1方法计算每次分裂时的特征数情况下,降维后RF模型的煤矸分类准确率为97%,比降维前提高4%,煤矸分...

Full description

Saved in:
Bibliographic Details
Published in工矿自动化 Vol. 46; no. 5; pp. 57 - 62
Main Authors 薛光辉, 李秀莹, 钱孝玲, 张云飞
Format Journal Article
LanguageChinese
Published 中国矿业大学(北京)机电与信息工程学院,北京,100083 2020
Subjects
Online AccessGet full text
ISSN1671-251X
DOI10.13272/j.issn.1671-251x.2019110064

Cover

More Information
Summary:TD672; 针对目前综放工作面煤矸图像识别方法存在的参数调节难度高、预测准确率低、易过拟合等问题,提出了一种基于随机森林(RF)算法的综放工作面煤矸图像识别方法.以担水沟煤矿6203综放工作面为工程背景,采集放煤口的煤矸图像并对其进行裁剪、灰度转化、对比度增强、图像滤波预处理;采用灰度-梯度共生矩阵提取出15个煤矸图像纹理特征;采用RF算法对15个煤矸纹理特征的重要性进行排序,并选取前5个实现降维处理,分析降维前后RF算法对煤矸图像的识别效果.结果 表明,在决策树个数为150、采用log2M+1方法计算每次分裂时的特征数情况下,降维后RF模型的煤矸分类准确率为97%,比降维前提高4%,煤矸分类查准率为0.98,查全率为0.96,且袋外错误经50次迭代达到9%,泛化能力更强.
ISSN:1671-251X
DOI:10.13272/j.issn.1671-251x.2019110064