基于改进RNN和VAR的船舶设备故障预测方法

TP206; 针对现有的多变量时间序列预测方法不能适用于船舶多设备故障预测的问题,提出一种基于改进的循环神经网络和向量自回归的船舶设备故障预测方法.该方法既能够学习多个变量之间的相互依赖关系和时间序列的长期依赖关系,又有助于减轻传统神经网络对预测时间序列的输入尺度不敏感性.首先,从船舶历史数据库中提取出正常状态数据和故障状态数据,将其多变量时间序列转化为监督学习问题的输入;然后,通过注意力机制捕获船舶多变量之间复杂的相关性;接着,将注意力机制的输出同时作为循环神经网络和向量自回归的输入,分别捕获船舶时间信号的非线性关系和线性关系;最后,将循环神经网络组件和向量自回归组件的输出进行处理后作为最终...

Full description

Saved in:
Bibliographic Details
Published in计算机科学 Vol. 48; no. 6; pp. 184 - 189
Main Authors 曾友渝, 谢强
Format Journal Article
LanguageChinese
Published 南京航空航天大学计算机科学与技术学院 南京211106 2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:TP206; 针对现有的多变量时间序列预测方法不能适用于船舶多设备故障预测的问题,提出一种基于改进的循环神经网络和向量自回归的船舶设备故障预测方法.该方法既能够学习多个变量之间的相互依赖关系和时间序列的长期依赖关系,又有助于减轻传统神经网络对预测时间序列的输入尺度不敏感性.首先,从船舶历史数据库中提取出正常状态数据和故障状态数据,将其多变量时间序列转化为监督学习问题的输入;然后,通过注意力机制捕获船舶多变量之间复杂的相关性;接着,将注意力机制的输出同时作为循环神经网络和向量自回归的输入,分别捕获船舶时间信号的非线性关系和线性关系;最后,将循环神经网络组件和向量自回归组件的输出进行处理后作为最终预测的结果.实验结果表明,提出的预测方法在船舶设备故障预测中训练过程的稳定性高,测试结果的均方根误差低于1.2,从而能更精确地预测船舶设备属性的趋势并避免故障的发生.
ISSN:1002-137X