高价金属钽掺杂无定型氧化铱用于酸性氧析出反应
氢能作为一种潜在的能源载体,有望取代化石燃料,解决当今社会的能源需求和环境问题.质子交换膜电解水(PEMWE)技术因其工作电流密度大、氢气纯度高和系统响应迅速等优点,能够有效地弥补可再生能源波动性等缺点,被认为是一种利用可再生能源制氢的可持续手段.但其阳极氧析出反应(OER)为四电子/质子转移过程,反应动力学缓慢,同时强氧化性和强酸性环境会对阳极催化剂的产生腐蚀,导致稳定性差,因此亟需开发高效且稳定的催化剂.研究发现,无定型氧化铱材料中的特殊缺陷结构可显著提升其催化酸性OER的活性,但该结构也会加速反应过程中铱的溶解,导致催化剂稳定性降低,严重限制了其实际应用. 本文采用高价金属掺杂的策略,利...
Saved in:
Published in | 催化学报 Vol. 53; no. 10; pp. 134 - 142 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,吉林长春 130022
2023
中国科学技术大学应用化学与工程学院,安徽合肥 230026%中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,吉林长春 130022 |
Subjects | |
Online Access | Get full text |
ISSN | 0253-9837 |
DOI | 10.1016/S1872-2067(23)64517-6 |
Cover
Summary: | 氢能作为一种潜在的能源载体,有望取代化石燃料,解决当今社会的能源需求和环境问题.质子交换膜电解水(PEMWE)技术因其工作电流密度大、氢气纯度高和系统响应迅速等优点,能够有效地弥补可再生能源波动性等缺点,被认为是一种利用可再生能源制氢的可持续手段.但其阳极氧析出反应(OER)为四电子/质子转移过程,反应动力学缓慢,同时强氧化性和强酸性环境会对阳极催化剂的产生腐蚀,导致稳定性差,因此亟需开发高效且稳定的催化剂.研究发现,无定型氧化铱材料中的特殊缺陷结构可显著提升其催化酸性OER的活性,但该结构也会加速反应过程中铱的溶解,导致催化剂稳定性降低,严重限制了其实际应用.
本文采用高价金属掺杂的策略,利用高价金属元素与氧的强成键作用,对无定型氧化铱的整体结构及活性位点起到优化且稳定的作用.首先,采用改性的亚当斯熔融法制备了金属钽掺杂的无定型氧化铱:350-Ta@IrOx,400-Ta@IrOx,450-Ta@IrOx(350,400和450代表样品分别在350,400和450 ℃烧结),并用于催化酸性OER;作为对比,制备了无掺杂的无定型氧化铱:350-IrOx,400-IrOx和450-IrOx.然后,通过扫描电子显微镜、透射电子显微镜(TEM)和X射线衍射等表征技术考察了材料的宏观形貌及微观结构.结果表明,掺杂后的350-Ta@IrOx材料表面具有丰富的氧空位贡献的活性位点,且表现出多晶的超小纳米颗粒形貌.电化学测试结果表明,350-Ta@IrOx具有较好的酸性OER活性,在10 mA cm-2的电流密度下,过电势仅为223 mV,在1.55 V vs.RHE的电位下质量活性为1207.4 A gIr-1,是商业二氧化铱的147.7倍.且该催化剂的稳定性比未掺杂Ta样品及商业二氧化铱有明显提升,在0.5 mol L-1硫酸溶液中反应500 h后电位未发生明显变化.密度泛函理论计算结果表明,Ta掺杂与构建缺陷有利于OER决速步中水分子的亲核进攻,从而提升催化活性并降低反应过电势.为进一步研究材料在酸性OER工作状态下具有较好稳定性的原因,采用TEM和X射线光电子能谱等对反应前后的材料进行表征.结果表明,350-Ta@IrOx在反应前后结构保持稳定,Ir溶解速率较未掺杂样品明显降低,证明了Ta掺杂大大提升了无定型氧化铱材料的稳定性.
综上,本文发展了制备高价金属掺杂氧化铱的改性亚当斯熔融法,利用高价金属元素与氧的强成键作用 |
---|---|
ISSN: | 0253-9837 |
DOI: | 10.1016/S1872-2067(23)64517-6 |