Sandwich structure for enhancing the interface reaction of hexanitrohexaazaisowurtzitane and nanoporous carbon scaffolds film to improve the thermal decomposition performance
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane(CL-20)by appropriate methods is helpful to promote the combustion performance of CL-20-based solid pro-pellants.In this study,we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film(NCS)and emp...
Saved in:
Published in | 防务技术 Vol. 18; no. 10; pp. 1886 - 1894 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Shanxi Fire&Explosion-Proofing Safety Engineering and Technology Research Center,North University of China,Taiyuan,030051,PR China%State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing,100081,PR China
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane(CL-20)by appropriate methods is helpful to promote the combustion performance of CL-20-based solid pro-pellants.In this study,we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film(NCS)and emphatically studied the thermal decomposition performance of the composite structure.Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure.The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS.These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20.Among the tested samples,NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20.Moreover,the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process.And a possible catalytic mechanism was proposed.The excellent thermal decomposition per-formance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS.This work may promote the extensive use of CL-20 in the field of solid rocket propellant. |
---|---|
ISSN: | 2214-9147 2214-9147 |
DOI: | 10.3969/j.issn.2214-9147.2022.10.012 |