Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
An ultrathin gate dielectric having a graded dielectric constant and a method for forming the same are provided. The gate dielectric is believed to allow enhanced performance of semiconductor devices including transistors and dual-gate memory cells. A thin nitrogen-containing oxide, preferably havin...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
28.06.2005
|
Online Access | Get full text |
Cover
Loading…
Summary: | An ultrathin gate dielectric having a graded dielectric constant and a method for forming the same are provided. The gate dielectric is believed to allow enhanced performance of semiconductor devices including transistors and dual-gate memory cells. A thin nitrogen-containing oxide, preferably having a thickness of less than about 10 angstroms, is formed on a semiconductor substrate. A silicon nitride layer having a thickness of less than about 30 angstroms may be formed over the nitrogen-containing oxide. The oxide and nitride layers are annealed in ammonia and nitrous oxide ambients, and the nitride layer thickness is reduced using a flowing-gas etch process. The resulting two-layer gate dielectric is believed to provide increased capacitance as compared to a silicon dioxide dielectric while maintaining favorable interface properties with the underlying substrate. In an alternative embodiment, a different high dielectric constant material is substituted for the silicon nitride. Alternatively, both nitride and a different high dielectric constant material may be used so that a three-layer dielectric is formed. |
---|