Metal strip for epitaxial coatings and method for the production thereof
The aim of the invention is to provide a metal strip for epitaxial coating with a biaxially textured layer, this metal strip, however, being able to be produced in an uncomplicated manner and having a high tensile strength, low magnetic losses and/or a high electrical conductivity. According to the...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
21.06.2005
|
Online Access | Get full text |
Cover
Loading…
Summary: | The aim of the invention is to provide a metal strip for epitaxial coating with a biaxially textured layer, this metal strip, however, being able to be produced in an uncomplicated manner and having a high tensile strength, low magnetic losses and/or a high electrical conductivity. According to the invention, the metal strip is comprised of Nj, Cu, Ag or alloys thereof all serving as basic material, whereby the one-layer metal strip and, in the instance of a multilayer metal strip, at least one of its layers contains 10 nm to 5 μm large, strength-increasing dispersoids comprised of carbides, borides, oxides and/or nitrides with a volume proportion ranging from 0.1 to 5%. In the instance of a multilayer metal strip, the layers form a composite, and at least one of the layers does not contain any dispersoids and has a biaxial texture. For the production, a starting material is used, which is comprised of Ni, Cu, Ag or of alloys thereof all serving as basic material and which contains 0.2 to 5 atom percent of an additive comprised of oxidizable, nitridable, boridable and/or carbidable elements. A one-layer or a multilayer strip is produced from this starting material by means of deforming methods, whereby for producing the multilayer metal strip, a basic material that does not contain the aforementioned additive is used as one of its layers. Afterwards, the strip is subjected to a recrystallization annealing in order to form a cubical texture. Finally, the strip is subjected to an annealing under an oxygen, nitrogen, boron or carbon partial pressure, which is greater than the equilibrium partial pressure of oxides, nitrides, borides and carbides of the additive elements contained in the alloy, but is less than the equilibrium partial pressure of oxides, nitrides, borides and carbides of the basic elements Ni, Cu and Ag of the strip alloy. |
---|