Method to create a high resolution database

For decades, military establishments all over the world have used mechanical surrogates of real vehicles as part of simulated environments where human operators are trained to operate vehicles under combat or mission conditions. Perhaps the classic example of such a surrogate is a flight simulator w...

Full description

Saved in:
Bibliographic Details
Main Author Reid, Alexander A
Format Patent
LanguageEnglish
Published 20.05.2003
Online AccessGet full text

Cover

Loading…
More Information
Summary:For decades, military establishments all over the world have used mechanical surrogates of real vehicles as part of simulated environments where human operators are trained to operate vehicles under combat or mission conditions. Perhaps the classic example of such a surrogate is a flight simulator which surrounds the flight crew and emulates the motion and environment of a cock pit. With respect to ground vehicle simulation, much research has been done by the United States Army. In particular, the US Army Tank-Automotive and Armaments Research, Engineering and Development Center (TARDEC) has been performing high-fidelity, real-time, man-in-the-loop simulations for a number of years. My invention is a method of generating a simulated terrain database that enhances TARDEC's simulation technology. A new method of creating a realistic simulated terrain database results in a database that requires less computer memory for storage than prior simulated terrain databases. The new method generates a simulated surface that provides realistic disturbances to a real-time mathematical model of a vehicle traversing the simulated surface. The simulated surface is also output visually. The method uses fractal Brownian motion to create the high-resolution terrain database in the frequency domain, and then the database is transformed to the spatial domain using a two-dimensional inverse Fast Fourier Transform. Then control points describing a NURBS surface are extracted from the transformed database, and thereafter geometric Gcontinuity is created between surface patches represented by the NURBS control points. The surface patches form a high-resolution surface superimposed on a lower resolution surface produced by the image generator to create a hybrid, high-resolution simulated terrain. The hybrid simulated terrain interacts with the vehicle model to provide a realistic experience to a human driver navigating the vehicle model over the terrain.