Method for making fabric-based, adhesively mounted printed circuit for upholstered seats and the like

It is currently a common practice to embed switches and sensors in upholstered seats, such as automobile seats to perform various control functions, such as to detect the presence of a driver or passenger in the seat, to sense the size and/or weight of a person in the seat, etc. Because of the flexi...

Full description

Saved in:
Bibliographic Details
Main Author De Bastiani, Norman P
Format Patent
LanguageEnglish
Published 28.05.2002
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is currently a common practice to embed switches and sensors in upholstered seats, such as automobile seats to perform various control functions, such as to detect the presence of a driver or passenger in the seat, to sense the size and/or weight of a person in the seat, etc. Because of the flexible nature of the mediums involves, it is convenient to employ flexible membrane circuit elements, which can accommodate the flexing and distortion of the upholstery fabric and padding when a person occupies a seat. A flexible printed circuit, sometimes referred to as a flexible membrane circuit, is screen printed onto one surface of a tightly woven polyester or nylon taffeta fabric. The opposite side of the fabric is coated with a long life pressure sensitive adhesive, protected until use by a suitable release sheet, or coated with a long life heat activated adhesive also protected with a suitable release sheet. The adhesive side of the fabric is applied to the underside of upholstery fabric, for example, the underside of an automobile seat. This provides an economical and functionally effective means of providing complex circuitry for sensing the presence of a person on the seat and/or detecting the weight of such person, etc. Significant savings are realized over conventional circuit-forming techniques.