Electrophoretic buss for transport of charged materials in a multi-chamber system

This invention relates generally to electronic devices for the movement of charged materials, especially charged biological materials. More particularly, it relates to microfluidic systems for the transport and/or analysis of electrically charged materials, especially biological materials including...

Full description

Saved in:
Bibliographic Details
Main Authors Ackley, Donald E, Sheldon, Edward L, Krihak, Michael K
Format Patent
LanguageEnglish
Published 23.04.2002
Online AccessGet full text

Cover

Loading…
More Information
Summary:This invention relates generally to electronic devices for the movement of charged materials, especially charged biological materials. More particularly, it relates to microfluidic systems for the transport and/or analysis of electrically charged materials, especially biological materials including nucleic acids and biological pathogens or toxins. Methods, apparatus, and applications for use of a stacked, reconfigurable system for electrophoretic transport are provided. In one embodiment, a system having a first chamber including at least a bottom support and an intermediate support, and a second chamber, said second chamber including a bottom support and a top member, the first and second chambers being coupled through a via. Electrophoretic, and optional electro-osmotic and thermal, transport is effected. In another aspect of this invention, three or more chambers are coupled by an electrophoretic buss. The electrophoretic buss includes driving electrodes and is adapted to receive fluid containing materials for transport. The chambers are coupled to the electrophoretic buss and serve as a tap from the buss for delivery of charged materials. In one embodiment, certain functions are performed in different chambers. For example, the first chamber may receive the sample and perform sample processing functions, the second chamber may perform amplification procedures, yet a third chamber may perform hybridization or other assays, and yet another chamber may perform immunoassays. By separating various functions to different chambers, speed and sensitivity may be improved. In yet another aspect of this invention, analysis from a earlier stage may be utilized in a subsequent stage to reconfigure the system for optimum use. In one application, analysis at a first level is utilized to determine an action at a second level, such as the synthesis of a compound. The synthesized compound in response to a biohazard may comprise vaccine or antidote.