Charging circuit

Charging a storage cell requires the electromotive force exerted at a photogenerating cell in addition to the voltage equal to or higher than the forward on voltage developed at an backflow preventing diode. Therefore, the charging is inefficient. Moreover, the area of the backflow preventing diode...

Full description

Saved in:
Bibliographic Details
Main Authors Nozaki, Takaaki, Aihara, Katsuyoshi, Iwakura, Ryoji
Format Patent
LanguageEnglish
Published 12.08.2004
Online AccessGet full text

Cover

Loading…
More Information
Summary:Charging a storage cell requires the electromotive force exerted at a photogenerating cell in addition to the voltage equal to or higher than the forward on voltage developed at an backflow preventing diode. Therefore, the charging is inefficient. Moreover, the area of the backflow preventing diode must be large in consideration for a current supply from the photogenerating cell at a high intensity of illumination. A charging circuit, constructed using a differential amplifier, which has a power supply therefor separated from another power supply, is used as a direction-of-current detecting circuit that detects the direction of current from a voltage difference between two different power supplies. Consequently, a switch is logically turned on or off depending on whether charging or non-charging is under way. Thus, on voltage to be developed during charging is lowered. Moreover, the size or area of a transistor that acts as a logical circuit is made smaller than that of the backflow preventing diode. Furthermore, the energy of a storage cell included in the charging circuit is hardly consumed in any states.