CELL-FREE DNA METHYLATION AND NUCLEASE-MEDIATED FRAGMENTATION
Nuclease activity can affect the methylation level and fragmentation of cfDNA. Certain levels of nuclease activity may be correlated with certain levels of methylation in certain regions. Methylation level in certain genomic regions can be analyzed to classify nuclease activity. Methylation statuses...
Saved in:
Format | Patent |
---|---|
Language | English |
Published |
08.04.2022
|
Online Access | Get full text |
Cover
Summary: | Nuclease activity can affect the methylation level and fragmentation of cfDNA. Certain levels of nuclease activity may be correlated with certain levels of methylation in certain regions. Methylation level in certain genomic regions can be analyzed to classify nuclease activity. Methylation statuses of different genomic regions compared to methylation statuses of other genomic regions can determine a level of a condition (e.g., a disease such as cancer or disorder) in a subject. Nuclease activity can be monitored through analysis of methylation statuses of different sites. The efficacy of a treatment can also be determined using methylation levels at certain genomic regions. The number of fragments from genomic regions that are hypomethylated or hypermethylated in a reference genome can be used to provide information (e.g., fractional concentration) on the sample itself. The size distribution of extrachromosomal circular DNA can also be used to analyze a biological sample. Systems are also described. |
---|