A structural study of Ruddlesden-Popper phases Sr3-xYx(Fe1.25Ni0.75)O7-delta with x <= 0.75 by neutron powder diffraction and EXAFS/XANES spectroscopy

The structures of Ruddlesden-Popper n = 2 member phases Sr3-xYxFe1.25Ni0.75O7-delta with 0 <= x <= 0.75 have been investigated using neutron powder diffraction and K-edge Fe and Ni EXAFS/XANES spectroscopy in order to gain information about the evolution of the oxygen vacancy distribut...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 13; p. 5313
Main Authors Grins, Jekabs, Wardecki, Dariusz, Jansson, Kjell, Carlson, Stefan, Biendicho, Jordi J., Svensson, Gunnar
Format Journal Article
LanguageEnglish
Published 2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:The structures of Ruddlesden-Popper n = 2 member phases Sr3-xYxFe1.25Ni0.75O7-delta with 0 <= x <= 0.75 have been investigated using neutron powder diffraction and K-edge Fe and Ni EXAFS/XANES spectroscopy in order to gain information about the evolution of the oxygen vacancy distribution and Fe/Ni oxidation state with x. Both samples prepared at 1300 degrees C under a flow of N-2(g), with delta = 1.41-1.00, and samples subsequently annealed in air at 900 degrees C, with delta = 0.44-0.59, were characterized. The as-prepared x = 0.75 phase has delta = 1, the O1 atom site is vacant, and the Fe3+/Ni2+ ions have a square pyramidal coordination. With decreasing x the O3 occupancy decreases nearly linearly to 81% for x = 0, while the O1 occupancy increases from 0 for x = 0.4 to 33% for x = 0. The air-annealed x = 0.75 sample has a delta value of 0.59 and the Fe3+/Fe4+/Ni2+/Ni3+ ions have both square pyramidal and octahedral coordination. With decreasing x, the delta value decreases to 0.45 for x = 0, implying an increase in the oxidation states of Fe/Ni ions. EXAFS/XANES data show that for the as-prepared samples the coordination changes are predominantly for Ni2+ ions and that the air-annealed samples contain both Fe3+/Fe4+ and Ni2+/Ni3+ ions.
ISSN:2050-7488
DOI:10.1039/c7ta07113b