On ε-phase-isometries between the positive cones of continuous function spaces On ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-phase-isometries between the positive
Let K and T be compact Hausdorff spaces, C + ( K ) = { f ∈ C ( K ) : f ( k ) ≥ 0 for all k ∈ K } be the positive cone of C ( K ). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε -phase-isometry F : C + ( K ) → C + ( T ) , there are nonempty closed su...
Saved in:
Published in | Indian journal of pure and applied mathematics Vol. 56; no. 2; pp. 728 - 736 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Indian National Science Academy
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0019-5588 0975-7465 |
DOI | 10.1007/s13226-023-00514-y |
Cover
Loading…
Summary: | Let
K
and
T
be compact Hausdorff spaces,
C
+
(
K
)
=
{
f
∈
C
(
K
)
:
f
(
k
)
≥
0
for
all
k
∈
K
}
be the positive cone of
C
(
K
). In this paper, we prove that if
K
is a compact Hausdorff perfectly normal space, then for every
ε
-phase-isometry
F
:
C
+
(
K
)
→
C
+
(
T
)
, there are nonempty closed subset
S
⊂
T
and an additive isometry
V
:
C
+
(
K
)
→
C
+
(
S
)
defined as
V
(
f
)
=
lim
n
→
∞
F
(
2
n
f
)
|
S
2
n
for each
f
∈
C
+
(
K
)
satisfying that
‖
F
(
f
)
|
S
-
V
(
f
)
‖
≤
3
2
ε
,
for
all
f
∈
C
+
(
K
)
.
Moreover, if
F
is almost surjective, then there exists a unique homeomorphism
γ
:
T
→
K
such that
|
F
(
f
)
(
t
)
-
f
(
γ
(
t
)
)
|
≤
3
2
ε
,
t
∈
T
,
f
∈
C
+
(
K
)
. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-023-00514-y |