The stability index of graphs
If G is a graph with vertex set V(G) and (vertex) automorphism group γ(G), then a sequence s={vπ(i)}i=1k of distinct vertices of G is a partial stabilising sequence for G if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage...
Saved in:
Published in | Combinatorial Mathematics pp. 29 - 52 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
27.06.2006
|
Series | Lecture Notes in Mathematics |
Online Access | Get full text |
Cover
Loading…
Summary: | If G is a graph with vertex set V(G) and (vertex) automorphism group γ(G), then a sequence s={vπ(i)}i=1k of distinct vertices of G is a partial stabilising sequence for G if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma \left( {G_{S_n } } \right) = \Gamma \left( G \right)_{S_n } $$\end{document}for n = 1,...,k. Here S is the set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bigcup\limits_{i = 1}^n {V_{\pi (i)} ,G_{S_n } } $$\end{document}is the subgraph of G induced by the subset V(G) — Sn of V(G) and γ(G)Sn is the group of permutations in γ(G) which fix each vertex in Sn, considered as acting on V(G) − Sn. The stability index of G, s.i. (G), is the maximum cardinality of a partial stabilising sequence for G; thus s.i. (G) = 0 if and only if G is not semi-stable (see [6]) and s.i. (G) = ¦v(G)¦ if and only if G is stable (see [4]).
The stability coefficient of G is s.c. (G) = s.i. (G)/¦V(G)¦. Making use of the above concepts, we characterise unions and joins of graphs which are semi-stable and enumerate trees with given stability index. Finally we investigate the problem of finding graphs with a given rational number as stability coefficient. |
---|---|
ISBN: | 3540069038 9783540069034 |
ISSN: | 0075-8434 1617-9692 |
DOI: | 10.1007/BFb0057373 |