Cryptanalysis of Multi-Prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}-Hiding Assumption
In Crypto 2010, Kiltz, O’Neill and Smith used m-prime RSA modulus N with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document...
Saved in:
Published in | Information Security pp. 440 - 453 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
2016
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In Crypto 2010, Kiltz, O’Neill and Smith used m-prime RSA modulus N with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\ge 3$$\end{document} for constructing lossy RSA. The security of the proposal is based on the Multi-Prime \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varPhi $$\end{document}-Hiding Assumption. In this paper, we propose a heuristic algorithm based on the Herrmann-May lattice method (Asiacrypt 2008) to solve the Multi-Prime \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varPhi $$\end{document}-Hiding Problem when prime \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$e>N^{\frac{2}{3m}}$$\end{document}. Further, by combining with mixed lattice techniques, we give an improved heuristic algorithm to solve this problem when prime \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$e>N^{\frac{2}{3m}-\frac{1}{4m^2}}$$\end{document}. These two results are verified by our experiments. Our bounds are better than the existing works. |
---|---|
ISBN: | 3319458701 9783319458700 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-45871-7_26 |