Cryptanalysis of Multi-Prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}-Hiding Assumption

In Crypto 2010, Kiltz, O’Neill and Smith used m-prime RSA modulus N with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document...

Full description

Saved in:
Bibliographic Details
Published inInformation Security pp. 440 - 453
Main Authors Xu, Jun, Hu, Lei, Sarkar, Santanu, Zhang, Xiaona, Huang, Zhangjie, Peng, Liqiang
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2016
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In Crypto 2010, Kiltz, O’Neill and Smith used m-prime RSA modulus N with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 3$$\end{document} for constructing lossy RSA. The security of the proposal is based on the Multi-Prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}-Hiding Assumption. In this paper, we propose a heuristic algorithm based on the Herrmann-May lattice method (Asiacrypt 2008) to solve the Multi-Prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}-Hiding Problem when prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e>N^{\frac{2}{3m}}$$\end{document}. Further, by combining with mixed lattice techniques, we give an improved heuristic algorithm to solve this problem when prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e>N^{\frac{2}{3m}-\frac{1}{4m^2}}$$\end{document}. These two results are verified by our experiments. Our bounds are better than the existing works.
ISBN:3319458701
9783319458700
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-45871-7_26