On Average-Case Hardness in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} from One-Way Functions

The complexity class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} consists of all \d...

Full description

Saved in:
Bibliographic Details
Published inTheory of Cryptography pp. 614 - 638
Main Authors Hubáček, Pavel, Kamath, Chethan, Král, Karel, Slívová, Veronika
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 09.12.2020
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The complexity class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} consists of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NP}$$\end{document}search problems that are total in the sense that a solution is guaranteed to exist for all instances. Over the years, this class has proved to illuminate surprising connections among several diverse subfields of mathematics like combinatorics, computational topology, and algorithmic game theory. More recently, we are starting to better understand its interplay with cryptography. We know that certain cryptographic primitives (e.g. one-way permutations, collision-resistant hash functions, or indistinguishability obfuscation) imply average-case hardness in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} and its important subclasses. However, its relationship with the most basic cryptographic primitive –  i.e., one-way functions (OWFs) – still remains unresolved. Under an additional complexity theoretic assumption, OWFs imply hardness in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} (Hubáček, Naor, and Yogev, ITCS 2017). It is also known that average-case hardness in most structured subclasses of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} does not imply any form of cryptographic hardness in a black-box way (Rosen, Segev, and Shahaf, TCC 2017) and, thus, one-way functions might be sufficient. Specifically, no negative result which would rule out basing average-case hardness in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document}solely on OWFs is currently known. In this work, we further explore the interplay between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} and OWFs and give the first negative results. As our main result, we show that there cannot exist constructions of average-case (and, in fact, even worst-case) hard \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document} problem from OWFs with a certain type of simple black-box security reductions. The class of reductions we rule out is, however, rich enough to capture many of the currently known cryptographic hardness results for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TFNP}$$\end{document}. Our results are established using the framework of black-box separations (Impagliazzo and Rudich, STOC 1989) and involve a novel application of the reconstruction paradigm (Gennaro and Trevisan, FOCS 2000).
Bibliography:This research was supported in part by the Grant Agency of the Czech Republic under the grant agreement no. 19-27871X, by the Charles University projects PRIMUS/17/SCI/9, UNCE/SCI/004, and GAUK 1568819, and by the Charles University grant SVV-2017-260452. The second author is supported by the IARPA grant IARPA/2019-19-020700009.
ISBN:3030643808
9783030643805
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-64381-2_22