Nouvelle Cuisine for the Computation of the Annihilating Ideal of fs
Let f1,..., fp be polynomials in C[x1,..., xn] and let D = Dn be the n-th Weyl algebra. The annihilating ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setleng...
Saved in:
Published in | Computer Algebra in Scientific Computing pp. 162 - 173 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let f1,..., fp be polynomials in C[x1,..., xn] and let D = Dn be the n-th Weyl algebra. The annihilating ideal of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$f^{s}=f_{1}^{s1}...f_{p}^{sp}$\end{document} in D[s]=D[s1,...,sp] is a necessary step for the computation of the Bernstein-Sato ideals of f1,..., fp.
We point out experimental differences among the efficiency of the available methods to obtain this annihilating ideal and provide some upper bounds for the complexity of its computation. |
---|---|
ISBN: | 9783540289661 3540289666 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11555964_14 |