Nouvelle Cuisine for the Computation of the Annihilating Ideal of fs

Let f1,..., fp be polynomials in C[x1,..., xn] and let D = Dn be the n-th Weyl algebra. The annihilating ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setleng...

Full description

Saved in:
Bibliographic Details
Published inComputer Algebra in Scientific Computing pp. 162 - 173
Main Authors Gago-Vargas, J., Hartillo-Hermoso, M. I., Ucha-Enríquez, J. M.
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let f1,..., fp be polynomials in C[x1,..., xn] and let D = Dn be the n-th Weyl algebra. The annihilating ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f^{s}=f_{1}^{s1}...f_{p}^{sp}$\end{document} in D[s]=D[s1,...,sp] is a necessary step for the computation of the Bernstein-Sato ideals of f1,..., fp. We point out experimental differences among the efficiency of the available methods to obtain this annihilating ideal and provide some upper bounds for the complexity of its computation.
ISBN:9783540289661
3540289666
ISSN:0302-9743
1611-3349
DOI:10.1007/11555964_14