Associating Co single atoms with RuO nanoparticles anchor on nitrogen-doped ultrathin porous carbon nanosheets as effective bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries

For developing rechargeable zinc-air batteries (ZABs), designing reasonably high-activity and robust endurance electrocatalysts toward oxygen evolution/reduction reactions (OER/ORR) is of paramount importance. Single-atom catalysts (SACs) have been considered as ideal candidates for driving oxygen e...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 31; pp. 16889 - 16899
Main Authors Ma, Xuena, Liu, Mingyang, Li, Qi, Xiao, Xudong, Liu, Jianan, Xu, Xiaoqin, Yin, Yihang, Qiao, Panzhe, Zhang, Luoming, Zou, Xiaoyan, Wang, Ruihong, Jiang, Baojiang
Format Journal Article
Published 08.08.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:For developing rechargeable zinc-air batteries (ZABs), designing reasonably high-activity and robust endurance electrocatalysts toward oxygen evolution/reduction reactions (OER/ORR) is of paramount importance. Single-atom catalysts (SACs) have been considered as ideal candidates for driving oxygen electrocatalysis in ZABs owing to their high electrocatalytic activity and atom utilization. However, oxidation and aggregation hinder their practical application. To address this issue, Co single atom-decorated RuO 2 nanoparticles loaded on nitrogen-doped ultrathin porous carbon nanosheets (designated as Co SA -RuO 2 -NUCN) were synthesized. We provide an effective method for stabilizing cobalt atom with ruthenium dioxide; the strong interfacial interaction between Co SA -RuO 2 makes the Co-O-Ru interface extremely stable in the electrocatalytic oxidation reaction. Meanwhile, Co SA -RuO 2 combines with ultrathin carbon nanosheets to enhance the conductivity. Consequently, the obtained Co SA -RuO 2 -NUCN exhibits outstanding performance toward ORR (half-wave potential of 0.90 V) and OER (280 mV at 10 mA cm −2 ), respectively. Moreover, the rechargeable ZAB with Co SA -RuO 2 -NUCN shows high open-circuit voltage (1.55 V), ultrahigh specific capacity (766.14 mA h g −1 ), and superb long-term cycling stability (800 h), outperforming the commercial Pt/C + RuO 2 . This study not only presents a method to obtain a high-activity and strong stability electrocatalyst but also encourages to explore advanced materials to promote the development of ZABs. The picture shows Co single atom-decorated RuO 2 nanoparticles anchored on nitrogen-doped ultrathin carbon nanosheet (Co SA -RuO 2 -NUCN). The bifunctional catalytic process (ORR/OER) of Co SA -RuO 2 -NUCN is also fully presented.
Bibliography:https://doi.org/10.1039/d3ta03197g
Electronic supplementary information (ESI) available. See DOI
ISSN:2050-7488
2050-7496
DOI:10.1039/d3ta03197g