@AgNPs and @AgNPs: a comparative analysis for antibacterial application
Although medicinal herbs contain many biologically active ingredients that can act as antibiotic agents, most of them are difficult to dissolve in lipids and absorb through biofilms in the gastrointestinal tract. Besides, silver nanoparticles (AgNPs) have been widely used as a potential antibacteria...
Saved in:
Published in | RSC advances Vol. 12; no. 55; pp. 3573 - 35743 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Published |
14.12.2022
|
Online Access | Get full text |
Cover
Loading…
Summary: | Although medicinal herbs contain many biologically active ingredients that can act as antibiotic agents, most of them are difficult to dissolve in lipids and absorb through biofilms in the gastrointestinal tract. Besides, silver nanoparticles (AgNPs) have been widely used as a potential antibacterial agent, however, to achieve a bactericidal effect, high concentrations are required. In this work, AgNPs were combined into plant-based antibiotic nanoemulsions using biocompatible alginate/carboxyl methylcellulose scaffolds. The silver nanoparticles were prepared by a green method with an aqueous extract of
Allium sativum
or
Phyllanthus urinaria
extract. The botanical antibiotic components in the alcoholic extract of these plants were encapsulated with emulsifier poloxamer 407 to reduce the particle size, and make the active ingredients both water-soluble and lipid-soluble. Field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray (EDX) analysis showed that the prepared nanosystems were spherical with a size of about 20 nm. Fourier transform infrared spectroscopy (FTIR) confirmed the interaction of the extracts and the alginate/carboxyl methylcellulose carrier.
In vitro
drug release kinetics of allicin and phyllanthin from the nanosystems exhibited a retarded release under different biological pH conditions. The antimicrobial activity of the synthesized nanoformulations were tested against
Escherichia coli
. The results showed that the nanosystem based on
Allium sativum
possesses a significantly higher antimicrobial activity against the tested organisms. Therefore, the combination of AgNPs with active compounds from
Allium sativum
extract is a good candidate for
in vivo
infection treatment application.
The combination of AgNPs and plant extracts provides synergic antibacterial effect on various
E. coli
strains. |
---|---|
Bibliography: | https://doi.org/10.1039/d2ra06847h Electronic supplementary information (ESI) available. See DOI |
ISSN: | 2046-2069 |
DOI: | 10.1039/d2ra06847h |