Redox chemistry in the pigment eumelanin as a function of temperature using broadband dielectric spectroscopyElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra09093a
Conductive biomolecular systems are investigated for their promise of new technologies. One biomolecular material that has garnered interest for device applications is eumelanin. Its unusual properties have led to its incorporation in a wide set of platforms including transistor devices and batterie...
Saved in:
Main Authors | , , , , , , , , , |
---|---|
Format | Journal Article |
Published |
29.01.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | Conductive biomolecular systems are investigated for their promise of new technologies. One biomolecular material that has garnered interest for device applications is eumelanin. Its unusual properties have led to its incorporation in a wide set of platforms including transistor devices and batteries. Much of eumelanin's conductive properties are due to a solid state redox comproportionation reaction. However, most of the work that has been done to demonstrate the role of the redox chemistry in eumelanin has been
via
control of eumelanin's hydration content with scant attention given to temperature dependent behavior. Here we demonstrate for the first time consistency between hydration and temperature effects for the comproportionation conductivity model utilizing dielectric spectroscopy, heat capacity measurements, frequency scaling phenomena and recognizing that activation energies in the range of ∼0.5 eV correspond to proton dissociation events. Our results demonstrate that biomolecular conductivity models should account for temperature and hydration effects coherently.
We demonstrate on synthetic eumelanin that biomolecular conductivity models should account for temperature and hydration effects coherently. |
---|---|
Bibliography: | 10.1039/c8ra09093a Electronic supplementary information (ESI) available. See DOI |
ISSN: | 2046-2069 |
DOI: | 10.1039/c8ra09093a |