Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spotsElectronic supplementary information (ESI) available: Chemicals, materials, and characterization for the experimental section. IR, XPS, buoyant mass and extinction data for NPG disks. See DOI: 10.1039/c4nr01645a

Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e. , collective oscillation of conduction band electrons. Thin films of nanoporous gold have r...

Full description

Saved in:
Bibliographic Details
Main Authors Zhao, Fusheng, Zeng, Jianbo, Parvez Arnob, Md Masud, Sun, Po, Qi, Ji, Motwani, Pratik, Gheewala, Mufaddal, Li, Chien-Hung, Paterson, Andrew, Strych, Uli, Raja, Balakrishnan, Willson, Richard C, Wolfe, John C, Lee, T. Randall, Shih, Wei-Chuan
Format Journal Article
LanguageEnglish
Published 26.06.2014
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e. , collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interactions as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of nanoporous gold disks can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. Furthermore, nanoporous gold disks can be fabricated as either bound on a surface or as non-aggregating colloidal suspension with high stability. NPG disks as novel plasmonic nanoparticles greatly promote plasmon-matter interactions.
Bibliography:10.1039/c4nr01645a
Electronic supplementary information (ESI) available: Chemicals, materials, and characterization for the experimental section. IR, XPS, buoyant mass and extinction data for NPG disks. See DOI
ISSN:2040-3364
2040-3372
DOI:10.1039/c4nr01645a