Growth and branching of gold nanoparticles through mesoporous silica thin filmsElectronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11547f

Composite materials made of mesoporous oxide thin films containing metallic nanoparticles are of high interest in various fields, including catalysis, biosensing and non-linear optics. We demonstrate in this work the fabrication of such composite materials containing a sub-monolayer of gold nanopart...

Full description

Saved in:
Bibliographic Details
Main Authors Angelom, Paula C, Pastoriza-Santos, Isabel, Prez-Juste, Jorge, Rodrguez-Gonzlez, Benito, Zelcer, Andrs, Soler-Illia, Galo J. A. A, Liz-Marzn, Luis M
Format Journal Article
LanguageEnglish
Published 19.01.2012
Online AccessGet full text

Cover

Loading…
More Information
Summary:Composite materials made of mesoporous oxide thin films containing metallic nanoparticles are of high interest in various fields, including catalysis, biosensing and non-linear optics. We demonstrate in this work the fabrication of such composite materials containing a sub-monolayer of gold nanoparticles (GNPs) of various shapes covered with mesoporous silica thin films. Additionally, the shape of the GNPs (and thus their optical properties) can be modified in situ through seeded growth and branching. Such growth proceeds upon wetting with HAuCl 4 solution, a surfactant (cetyltrimethylammonium bromide, CTAB) and a mild reducing agent (ascorbic acid, AA). The effect of varying several reaction parameters (time and CTAB and AA concentrations) was evaluated, showing that more anisotropic particles are obtained at longer reaction times, lower CTAB concentration and higher AA concentration. The final shape of the GNPs was also found to depend on their initial shape and size, as well as the pore size of the mesoporous film covering them. Because the growth proceeds through the pores of the film, it may lead to shapes that are not easily obtained in solution, such as particles with branches on one side only. Finally, we have confirmed that no damage was induced to the mesoporous silica structure during the growth process and thus the final particles remain well covered by the thin film, which can eventually be used as a filter between the GNPs and the outer medium. Composite materials containing gold nanoparticles covered with mesoporous silica films are prepared; particle shape and optical properties are modified through seeded growth.
Bibliography:10.1039/c2nr11547f
Electronic supplementary information (ESI) available. See DOI
ISSN:2040-3364
2040-3372
DOI:10.1039/c2nr11547f