Measuring the dynamics of E. coli ribosome biogenesis using pulse-labeling and quantitative mass spectrometryElectronic supplementary information (ESI) available. See DOI: 10.1039/c2mb25310k

The ribosome is an essential organelle responsible for cellular protein synthesis. Until recently, the study of ribosome assembly has been largely limited to in vitro assays, with few attempts to reconcile these results with the more complex ribosome biogenesis process inside the living cell. Here,...

Full description

Saved in:
Bibliographic Details
Main Authors Chen, Stephen S, Sperling, Edit, Silverman, Josh M, Davis, Joseph H, Williamson, James R
Format Journal Article
LanguageEnglish
Published 30.10.2012
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ribosome is an essential organelle responsible for cellular protein synthesis. Until recently, the study of ribosome assembly has been largely limited to in vitro assays, with few attempts to reconcile these results with the more complex ribosome biogenesis process inside the living cell. Here, we characterize the ribosome synthesis and assembly pathway for each of the E. coli ribosomal protein (r-protein) in vivo using a stable isotope pulse-labeling timecourse. Isotope incorporation into assembled ribosomes was measured by quantitative mass spectrometry (qMS) and fit using steady-state flux models. Most r-proteins exhibit precursor pools ranging in size from 0% to 7% of completed ribosomes, and the sizes of these individual r-protein pools correlate well with the order of r-protein binding in vitro. Additionally, we observe anomalously large precursor pools for specific r-proteins with known extra-ribosomal functions, as well as three r-proteins that apparently turnover during steady-state growth. Taken together, this highly precise, time-dependent proteomic qMS approach should prove useful in future studies of ribosome biogenesis and could be easily extended to explore other complex biological processes in a cellular context. We developed a high-precision stable isotope pulse-labeling approach to quantitate key features of ribosome biogenesis in E. coli .
Bibliography:10.1039/c2mb25310k
Electronic supplementary information (ESI) available. See DOI
ISSN:1742-206X
1742-2051
DOI:10.1039/c2mb25310k