Towards detection and identification of circulating tumour cells using Raman spectroscopyThis article is part of a themed issue on Optical Diagnosis. This issue includes work presented at SPEC 2010 Shedding Light on Disease: Optical Diagnosis for the New Millennium, which was held in Manchester, UK June 26th-July 1st 2010
Body fluids are easily accessible and contain valuable indices for medical diagnosis. Fascinating tools are tumour cells circulating in the peripheral blood of cancer patients. As these cells are extremely rare, they constitute a challenge for clinical diagnostics. In this contribution we present th...
Saved in:
Main Authors | , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
15.11.2010
|
Online Access | Get full text |
Cover
Loading…
Summary: | Body fluids are easily accessible and contain valuable indices for medical diagnosis. Fascinating tools are tumour cells circulating in the peripheral blood of cancer patients. As these cells are extremely rare, they constitute a challenge for clinical diagnostics. In this contribution we present the Raman spectroscopic-based identification of different single cells in suspension that are found in peripheral blood of cancer patients including healthy cells like leukocytes and erythrocytes, and tumour cells like leukaemic cells and cells originating from solid tumours. Leukocytes and erythrocytes were isolated from the peripheral blood of healthy donors while myeloid leukaemia cells (OCI-AML3) and breast carcinoma derived cells (MCF-7, BT-20) were obtained from cell cultures. A laser emitting 785 nm light was used for optical trapping the single cells in the laser focus and to excite the Raman spectrum. Support vector machines were applied to develop a supervised classification model with spectra of 1210 cells originating from three different donors and three independent cultivation batches. Distinguishing tumour cells from healthy cells was achieved with a sensitivity of >99.7% and a specificity of >99.5%. In addition, the correct cell types were predicted with an accuracy of approximately 92%.
Presented here is the Raman spectroscopic-based identification of different single cells in suspension that are found in peripheral blood of cancer patients including healthy cells like leukocytes and erythrocytes, and tumour cells like leukaemic cells and cells originating from solid tumours. |
---|---|
Bibliography: | This article is part of a themed issue on Optical Diagnosis. This issue includes work presented at SPEC 2010 Shedding Light on Disease: Optical Diagnosis for the New Millennium, which was held in Manchester, UK June 26th-July 1st 2010. |
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/c0an00608d |