documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{3/4}$$\end{document}N3/4 Law in the Cubic Lattice
We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}...
Saved in:
Published in | Journal of statistical physics Vol. 176; no. 6; pp. 1480 - 1499 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | We investigate the Edge-Isoperimetric Problem (EIP) for sets with
n
elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_n$$\end{document}
M
n
of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathrm{O}(n^{3/4})$$\end{document}
O
(
n
3
/
4
)
elements. The exponent 3 / 4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-019-02350-z |