Stevioside inhibits experimental fibrosis by downregulating profibrotic Smad pathways and blocking HSC activation
Liver cirrhosis is associated with increased morbidity and mortality with important health and social consequences; however, an effective treatment has not been found yet. Previous reports have shown some beneficial effects of stevioside (SVT) in different diseases, but the ability of SVT to inhibit...
Saved in:
Published in | Basic & clinical pharmacology & toxicology Vol. 124; no. 6; pp. 670 - 680 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
10.01.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | Liver cirrhosis is associated with increased morbidity and mortality with important health and social consequences; however, an effective treatment has not been found yet. Previous reports have shown some beneficial effects of stevioside (SVT) in different diseases, but the ability of SVT to inhibit liver cirrhosis has not been reported. Therefore, we studied the potential of this diterpenoid to inhibit liver cirrhosis induced by thioacetamide, a model that shares many similarities with the human disease, and investigated the possible underlying molecular mechanism using
in vivo
and
in vitro
approaches. Cirrhosis was induced in male Wistar rats by chronic thioacetamide administration (200 mg/kg) intraperitoneally three times per week. Rats received saline or SVT (20 mg/kg) two times daily intraperitoneally. In addition, co-cultures were incubated with either lipopolysaccharide or ethanol. Liver fibrosis, hepatic stellate cells activation, metalloproteinases activity, canonical and non-canonical Smads pathway and expression of several profibrogenic genes were evaluated. Thioacetamide activated hepatic stellate cells and distorted the liver parenchyma with the presence of abundant thick bands of collagen. In addition, thioacetamide upregulated the protein expression of α-smooth muscle actin, transforming growth factor-β1, metaloproteinases-9,−2 and −13 and overstimulate the canonical and non-canonical Smad pathways. SVT administration inhibited all of these changes.
In vitro
, SVT inhibited the upregulation of several genes implicated in cirrhosis when cells were exposed to lipopolysaccharides or ethanol. We conclude that SVT inhibited liver damage by blocking hepatic stellate cells activation, downregulating canonical and non-canonical profibrotic Smad pathways. |
---|---|
ISSN: | 1742-7835 1742-7843 |
DOI: | 10.1111/bcpt.13194 |