Stevioside inhibits experimental fibrosis by downregulating profibrotic Smad pathways and blocking HSC activation

Liver cirrhosis is associated with increased morbidity and mortality with important health and social consequences; however, an effective treatment has not been found yet. Previous reports have shown some beneficial effects of stevioside (SVT) in different diseases, but the ability of SVT to inhibit...

Full description

Saved in:
Bibliographic Details
Published inBasic & clinical pharmacology & toxicology Vol. 124; no. 6; pp. 670 - 680
Main Authors Casas-Grajales, Sael, Alvarez-Suarez, Diana, Ramos-Tovar, Erika, Buendía-Montaño, Laura Dayana, Reyes-Gordillo, Karina, Camacho, Javier, Tsutsumi, Víctor, Lakshman, M. Raj, Muriel, Pablo
Format Journal Article
LanguageEnglish
Published 10.01.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:Liver cirrhosis is associated with increased morbidity and mortality with important health and social consequences; however, an effective treatment has not been found yet. Previous reports have shown some beneficial effects of stevioside (SVT) in different diseases, but the ability of SVT to inhibit liver cirrhosis has not been reported. Therefore, we studied the potential of this diterpenoid to inhibit liver cirrhosis induced by thioacetamide, a model that shares many similarities with the human disease, and investigated the possible underlying molecular mechanism using in vivo and in vitro approaches. Cirrhosis was induced in male Wistar rats by chronic thioacetamide administration (200 mg/kg) intraperitoneally three times per week. Rats received saline or SVT (20 mg/kg) two times daily intraperitoneally. In addition, co-cultures were incubated with either lipopolysaccharide or ethanol. Liver fibrosis, hepatic stellate cells activation, metalloproteinases activity, canonical and non-canonical Smads pathway and expression of several profibrogenic genes were evaluated. Thioacetamide activated hepatic stellate cells and distorted the liver parenchyma with the presence of abundant thick bands of collagen. In addition, thioacetamide upregulated the protein expression of α-smooth muscle actin, transforming growth factor-β1, metaloproteinases-9,−2 and −13 and overstimulate the canonical and non-canonical Smad pathways. SVT administration inhibited all of these changes. In vitro , SVT inhibited the upregulation of several genes implicated in cirrhosis when cells were exposed to lipopolysaccharides or ethanol. We conclude that SVT inhibited liver damage by blocking hepatic stellate cells activation, downregulating canonical and non-canonical profibrotic Smad pathways.
ISSN:1742-7835
1742-7843
DOI:10.1111/bcpt.13194