Wavelet optimal estimations for a two-dimensional continuous-discrete density function over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}$\end{document}Lp risk

The mixed continuous-discrete density model plays an important role in reliability, finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan, and Doosti provide upper bounds of wavelet estimations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepa...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2018; no. 1
Main Authors Hu, Lin, Zeng, Xiaochen, Wang, Jinru
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mixed continuous-discrete density model plays an important role in reliability, finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan, and Doosti provide upper bounds of wavelet estimations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document} L 2 risk for a two-dimensional continuous-discrete density function over Besov spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{s}_{r,q}$\end{document} B r , q s . This paper deals with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}$\end{document} L p ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq p < \infty$\end{document} 1 ≤ p < ∞ ) risk estimations over Besov space, which generalizes Chesneau–Dewan–Doosti’s theorems. In addition, we firstly provide a lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}$\end{document} L p risk. It turns out that the linear wavelet estimator attains the optimal convergence rate for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r \geq p$\end{document} r ≥ p , and the nonlinear one offers optimal estimation up to a logarithmic factor.
ISSN:1025-5834
1029-242X
DOI:10.1186/s13660-018-1868-7