Sharp \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{3/4}$$\end{document}N3/4 Law for the Minimizers of the Edge-Isoperimetric Problem on the Triangular Lattice

We investigate the edge-isoperimetric problem (EIP) for sets of n points in the triangular lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. By introducing a suitable notion of perimeter and area, EIP minimizers are characterized as extremizers...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonlinear science Vol. 27; no. 2; pp. 627 - 660
Main Authors Davoli, Elisa, Piovano, Paolo, Stefanelli, Ulisse
Format Journal Article
LanguageEnglish
Published New York Springer US 05.11.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the edge-isoperimetric problem (EIP) for sets of n points in the triangular lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. By introducing a suitable notion of perimeter and area, EIP minimizers are characterized as extremizers of an isoperimetric inequality: they attain maximal area and minimal perimeter among connected configurations. The maximal area and minimal perimeter are explicitly quantified in terms of n . In view of this isoperimetric characterizations, EIP minimizers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n$$\end{document} M n are seen to be given by hexagonal configurations with some extra points at their boundary. By a careful computation of the cardinality of these extra points, minimizers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n$$\end{document} M n are estimated to deviate from such hexagonal configurations by at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_t\, n^{3/4}+\mathrm{o}(n^{3/4})$$\end{document} K t n 3 / 4 + o ( n 3 / 4 ) points. The constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_t$$\end{document} K t is explicitly determined and shown to be sharp.
Bibliography:Communicated by Michael Ward.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-016-9346-1