Sharp \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{3/4}$$\end{document}N3/4 Law for the Minimizers of the Edge-Isoperimetric Problem on the Triangular Lattice
We investigate the edge-isoperimetric problem (EIP) for sets of n points in the triangular lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. By introducing a suitable notion of perimeter and area, EIP minimizers are characterized as extremizers...
Saved in:
Published in | Journal of nonlinear science Vol. 27; no. 2; pp. 627 - 660 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
05.11.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | We investigate the edge-isoperimetric problem (EIP) for sets of
n
points in the triangular lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. By introducing a suitable notion of perimeter and area, EIP minimizers are characterized as extremizers of an isoperimetric inequality: they attain maximal area and minimal perimeter among connected configurations. The maximal area and minimal perimeter are explicitly quantified in terms of
n
. In view of this isoperimetric characterizations, EIP minimizers
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_n$$\end{document}
M
n
are seen to be given by hexagonal configurations with some extra points at their boundary. By a careful computation of the cardinality of these extra points, minimizers
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_n$$\end{document}
M
n
are estimated to deviate from such hexagonal configurations by at most
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_t\, n^{3/4}+\mathrm{o}(n^{3/4})$$\end{document}
K
t
n
3
/
4
+
o
(
n
3
/
4
)
points. The constant
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_t$$\end{document}
K
t
is explicitly determined and shown to be sharp. |
---|---|
Bibliography: | Communicated by Michael Ward. |
ISSN: | 0938-8974 1432-1467 |
DOI: | 10.1007/s00332-016-9346-1 |