A Qrr non-coding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics

Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encodin...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 160; pp. 228 - 240
Main Authors Feng, Lihui, Rutherford, Steven T., Papenfort, Kai, Bagert, John D., van Kessel, Julia C., Tirrell, David A., Wingreen, Ned S., Bassler, Bonnie L.
Format Journal Article
LanguageEnglish
Published 08.01.2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR , luxO , luxM , and aphA . We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome-binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response.
Bibliography:Present address: Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
Present address: Genentech, Inc. San Francisco, CA 94080, USA
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2014.11.051