Differential expression of 24,426 human alternative splicing events and predicted cis-regulation in 48 tissues and cell lines

Alternative pre–messenger RNA splicing impacts development, physiology, and disease, but its regulation in humans is not well understood, partially due to the limited scale to which the expression of specific splicing events has been measured. We generated the first genome-scale expression compendiu...

Full description

Saved in:
Bibliographic Details
Published inNature genetics Vol. 40; no. 12; pp. 1416 - 1425
Main Authors Castle, John C., Zhang, Chaolin, Shah, Jyoti K., Kulkarni, Amit V., Cooper, Thomas A., Johnson, Jason M.
Format Journal Article
LanguageEnglish
Published 02.11.2008
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alternative pre–messenger RNA splicing impacts development, physiology, and disease, but its regulation in humans is not well understood, partially due to the limited scale to which the expression of specific splicing events has been measured. We generated the first genome-scale expression compendium of human alternative splicing events using custom whole-transcript microarrays monitoring expression of 24,426 alternative splicing events in 48 diverse human samples. Over 11,700 genes and 9,500 splicing events were differentially expressed, providing a rich resource for studying splicing regulation. An unbiased, systematic screen of 21,760 4-mer to 7-mer words for cis -regulatory motifs identified 143 RNA 'words' enriched near regulated cassette exons, including six clusters of motifs represented by UCUCU, UGCAUG, UGCU, UGUGU, UUUU, and AGGG, which map to trans-acting regulators PTB, Fox, Muscleblind, CELF/CUG-BP, TIA-1, and hnRNP F/H, respectively. Each cluster showed a distinct pattern of genomic location and tissue specificity. For example, UCUCU occurs 110 to 35 nucleotides preceding cassette exons upregulated in brain and striated muscle but depleted in other tissues. UCUCU and UGCAUG appear to have similar function but independent action, occurring 5' and 3', respectively, of 33% of the cassette exons upregulated in skeletal muscle but co-occurring for only 2%.
ISSN:1061-4036
1546-1718
DOI:10.1038/ng.264