The HCoV-HKU1 N-terminal domain binds a wide range of 9- O -acetylated sialic acids presented on different glycan cores

Coronaviruses recognize a wide array of protein and glycan receptors using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal (S1-NTD) and C-terminal (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possess an evolutionarily conser...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv : the preprint server for biology
Main Authors Tomris, Ilhan, Kimpel, Anne, Liang, Ruonan, van der Woude, Roosmarijn, Boons, Geert-Jan, Li, Zeshi, de Vries, Robert P
Format Journal Article
LanguageEnglish
Published United States 24.05.2024
Online AccessGet more information

Cover

Loading…
More Information
Summary:Coronaviruses recognize a wide array of protein and glycan receptors using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal (S1-NTD) and C-terminal (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possess an evolutionarily conserved glycan binding cleft that facilitates weak interactions with sialic acids on cell surfaces. HCoV-HKU1 employs 9- -acetylated α2-8-linked disialylated structures for initial binding, followed by TMPRSS2 receptor binding and virus-cell fusion. Here, we demonstrate that HCoV-HKU1 NTD has a broader receptor binding repertoire than previously recognized. We presented HCoV-HKU1 NTD Fc chimeras on a nanoparticle system to mimic the densely decorated surface of HCoV-HKU1. These proteins were expressed by HEK293S GNTI cells, generating species carrying Man-5 structures, often observed near the receptor binding site of CoVs. This multivalent presentation of high-mannose-containing NTD proteins revealed a much broader receptor binding profile compared to its fully glycosylated counterpart. Using glycan microarrays, we observed that 9- -acetylated α2-3 linked sialylated LacNAc structures are also bound, comparable to OC43 NTD, suggesting an evolutionarily conserved glycan-binding modality. Further characterization of receptor specificity indicated promiscuous binding towards 9- -acetylated sialoglycans, independent of the glycan core (glycolipids, or -glycans). We demonstrate that HCoV-HKU1 may employ additional sialoglycan receptors to trigger conformational changes in the spike glycoprotein to expose the S1-CTD for proteinaceous receptor binding. (218).