D R e A mocracy: A Method to Capitalise on Prior Drug Discovery Efforts to Highlight Candidate Drugs for Repurposing

In the area of drug research, several computational drug repurposing studies have highlighted candidate repurposed drugs, as well as clinical trial studies that have tested/are testing drugs in different phases. To the best of our knowledge, the aggregation of the proposed lists of drugs by previous...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 25; no. 10
Main Authors Savva, Kyriaki, Zachariou, Margarita, Bourdakou, Marilena M, Dietis, Nikolas, Spyrou, George M
Format Journal Article
LanguageEnglish
Published Switzerland 13.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the area of drug research, several computational drug repurposing studies have highlighted candidate repurposed drugs, as well as clinical trial studies that have tested/are testing drugs in different phases. To the best of our knowledge, the aggregation of the proposed lists of drugs by previous studies has not been extensively exploited towards generating a dynamic reference matrix with enhanced resolution. To fill this knowledge gap, we performed weight-modulated majority voting of the modes of action, initial indications and targeted pathways of the drugs in a well-known repository, namely the Drug Repurposing Hub. Our method, D e mocracy, exploits this pile of information and creates frequency tables and, finally, a disease suitability score for each drug from the selected library. As a testbed, we applied this method to a group of neurodegenerative diseases (Alzheimer's, Parkinson's, Huntington's disease and Multiple Sclerosis). A super-reference table with drug suitability scores has been created for all four neurodegenerative diseases and can be queried for any drug candidate against them. Top-scored drugs for Alzheimer's Disease include agomelatine, mirtazapine and vortioxetine; for Parkinson's Disease, they include apomorphine, pramipexole and lisuride; for Huntington's, they include chlorpromazine, fluphenazine and perphenazine; and for Multiple Sclerosis, they include zonisamide, disopyramide and priralfimide. Overall, D e mocracy is a methodology that focuses on leveraging the existing drug-related experimental and/or computational knowledge rather than a predictive model for drug repurposing, offering a quantified aggregation of existing drug discovery results to (1) reveal trends in selected tracks of drug discovery research with increased resolution that includes modes of action, targeted pathways and initial indications for the investigated drugs and (2) score new candidate drugs for repurposing against a selected disease.
ISSN:1422-0067