Hyaluronic acid hydrolysis using vacuum ultraviolet TiO 2 photocatalysis combined with an oxygen nanobubble system
Advanced technologies for producing high-quality low molecular weight hyaluronic acid (LMW-HA) are required from the perspective of cost-efficiency and biosafety. Here, we report a new LMW-HA production system from high molecular weight HA (HMW-HA) using vacuum ultraviolet TiO photocatalysis with an...
Saved in:
Published in | Carbohydrate polymers Vol. 299; p. 120178 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Advanced technologies for producing high-quality low molecular weight hyaluronic acid (LMW-HA) are required from the perspective of cost-efficiency and biosafety. Here, we report a new LMW-HA production system from high molecular weight HA (HMW-HA) using vacuum ultraviolet TiO
photocatalysis with an oxygen nanobubble system (VUV-TP-NB). The VUV-TP-NB treatment for 3 h resulted in a satisfactory LMW-HA (approximately 50 kDa measured by GPC) yield with a low endotoxin level. Further, there were no inherent structural changes in the LMW-HA during the oxidative degradation process. Compared with conventional acid and enzyme hydrolysis methods, VUV-TP-NB showed similar degradation degree with viscosity though reduced process time by at least 8-fold. In terms of endotoxin and antioxidant effects, degradation using VUV-TP-NB demonstrated the lowest endotoxin level (0.21 EU/mL) and highest radical scavenging activity. This nanobubble-based photocatalysis system can thus be used to produce biosafe LMW-HA cost-effectively for food, medical, and cosmetics applications. |
---|---|
ISSN: | 1879-1344 |