Delineating genotypes and phenotypes of individual cells from long-read single cell transcriptomes
Single-cell nanopore sequencing of full-length mRNAs (scNanoRNAseq) is transforming singlecell multi-omics studies. However, challenges include computational complexity and dependence on short-read curation. To address this, we developed a comprehensive toolkit, scNanoGPS to calculate same-cell geno...
Saved in:
Published in | bioRxiv : the preprint server for biology |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
03.02.2023
|
Online Access | Get more information |
Cover
Loading…
Summary: | Single-cell nanopore sequencing of full-length mRNAs (scNanoRNAseq) is transforming singlecell multi-omics studies. However, challenges include computational complexity and dependence on short-read curation. To address this, we developed a comprehensive toolkit, scNanoGPS to calculate same-cell genotypes-phenotypes without short-read guidance. We applied scNanoGPS onto 23,587 long-read transcriptomes from 4 tumors and 2 cell lines. Standalone, scNanoGPS accurately deconvoluted error-prone long-reads into single-cells and single-molecules. Further, scNanoGPS simultaneously accessed both phenotypes (expressions/isoforms) and genotypes (mutations) of individual cells. Our analyses revealed that tumor and stroma/immune cells often expressed significantly distinct combinations of isoforms (DCIs). In a kidney tumor, we identified 924 genes with DCIs involved in cell-type-specific functions such as
in tumor cells and
in lymphocytes. Moreover, transcriptome-wide mutation analyses identified many cell-type-specific mutations including
mutations in tumor cells and
mutations in immune cells, highlighting critical roles of different populations in tumors. Together, scNanoGPS facilitates applications of single-cell long-read sequencing. |
---|