Organoid generation from mouse mammary tumors captures the genetic heterogeneity of clinically relevant copy number alterations
Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications. Using publicly available datasets, we identify copy number amplifications in metastatic breast tumor samples and using our organoid-based metastasis assays, and we validate FGFR1 is amplified i...
Saved in:
Published in | bioRxiv : the preprint server for biology |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
31.01.2023
|
Online Access | Get more information |
Cover
Loading…
Summary: | Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications. Using publicly available datasets, we identify copy number amplifications in metastatic breast tumor samples and using our organoid-based metastasis assays, and we validate FGFR1 is amplified in collectively migrating organoids. Because the heterogeneity of breast tumors is increasingly becoming relevant to clinical practice, we demonstrate our organoid method captures genetic heterogeneity of individual tumors. |
---|