Physical and natural cross-linking approaches on 3D gelatin microspheres for cartilage regeneration

The use of gelatin microspheres (GM) as a cell carrier has been extensively researched. One of its limitation is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of cross-linking agents to circumvent the constrai...

Full description

Saved in:
Bibliographic Details
Published inTissue engineering. Part C, Methods
Main Authors Sulaiman, Shamsul Bin, Abdul Rani, Rizal Bin, Mohamad Yahaya, Nor Hamdan Bin, Tabata, Yasuhiko, Hiraoka, Yosuke, Seet, Wan Tai, Ng, Min Hwei
Format Journal Article
LanguageEnglish
Published United States 26.05.2022
Online AccessGet more information

Cover

Loading…
More Information
Summary:The use of gelatin microspheres (GM) as a cell carrier has been extensively researched. One of its limitation is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of cross-linking agents to circumvent the constraint. Thus, the current study examines two different methods of cross-linking and their effect on the microsphere's '"physicochemical and cartilage tissue regeneration capacity. Crosslinking was accomplished by physical [Dehydrothermal (DHT)] and natural (Genipin) cross-linking of the 3D gelatin microspheres (GM). We begin by comparing the microstructures of the scaffolds and their long-term resistance to degradation under physiological conditions (in isotonic solution, at 37 °C, pH = 7.4). Infrared spectroscopy indicated that the gelatin structure was preserved after the cross-linking treatments. The cross-linked GM" 'demonstrated good cell adhesion, viability, proliferation, and widespread 3D scaffold colonization when seeded with human bone marrow mesenchymal stem cells (BMSCs). Additionally, the cross-linked microspheres enhanced chondrogenesis, as demonstrated by the data. It was discovered that cross-linked GM increased the expression of cartilage-related genes and the biosynthesis of a glycosaminoglycan-positive matrix as compared to non-crosslinked GM. In comparison, DHT-crosslinked results were significantly enhanced. To summarize, DHT treatment was found to be a superior approach for cross-linking the GM in order to promote better cartilage tissue regeneration.
ISSN:1937-3392