Genotoxic Evaluation of Fe 3 O 4 Nanoparticles in Different Three Barley ( Hordeum vulgare L.) Genotypes to Explore the Stress-Resistant Molecules

Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists' attention, especially for applications in agricultural production as nanonutrition. Therefore, the present rese...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 26; no. 21
Main Authors Kokina, Inese, Plaksenkova, Ilona, Galek, Renata, Jermaļonoka, Marija, Kirilova, Elena, Gerbreders, Vjaceslavs, Krasovska, Marina, Sledevskis, Eriks
Format Journal Article
LanguageEnglish
Published Switzerland 05.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists' attention, especially for applications in agricultural production as nanonutrition. Therefore, the present research was carried out to investigate the effect of Fe O NPs at low concentrations (0, 1, 10, and 20 mg/L) on three genotypes of barley ( L.) seedlings grown in hydroponic conditions. Significant increases in seedling growth, enhanced chlorophyll quality and quantity, and two miRNA expression levels were observed. Additionally, increased genotoxicity was observed in seedlings grown with NPs. Generally, Fe O NPs at low concentrations could be successfully used as nanonutrition for increasing barley photosynthetic efficiency with consequently enhanced yield. These results are important for a better understanding of the potential impact of Fe O NPs at low concentrations in agricultural crops and the potential of these NPs as nanonutrition for barley growth and yield enhancement. Future studies are needed to investigate the effect of these NPs on the expression of resistance-related genes and chlorophyll synthesis-related gene expression in treated barley seedlings.
ISSN:1420-3049