Dyshomeostatic modulation of Ca 2+ -activated K + channels in a human neuronal model of KCNQ2 encephalopathy

Mutations in , which encodes a pore-forming K channel subunit responsible for neuronal M-current, cause neonatal epileptic encephalopathy, a complex disorder presenting with severe early-onset seizures and impaired neurodevelopment. The condition is exceptionally difficult to treat, partially becaus...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 10
Main Authors Simkin, Dina, Marshall, Kelly A, Vanoye, Carlos G, Desai, Reshma R, Bustos, Bernabe I, Piyevsky, Brandon N, Ortega, Juan A, Forrest, Marc, Robertson, Gabriella L, Penzes, Peter, Laux, Linda C, Lubbe, Steven J, Millichap, John J, George, Jr, Alfred L, Kiskinis, Evangelos
Format Journal Article
LanguageEnglish
Published England 05.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mutations in , which encodes a pore-forming K channel subunit responsible for neuronal M-current, cause neonatal epileptic encephalopathy, a complex disorder presenting with severe early-onset seizures and impaired neurodevelopment. The condition is exceptionally difficult to treat, partially because the effects of mutations on the development and function of human neurons are unknown. Here, we used induced pluripotent stem cells (iPSCs) and gene editing to establish a disease model and measured the functional properties of differentiated excitatory neurons. We find that patient iPSC-derived neurons exhibit faster action potential repolarization, larger post-burst afterhyperpolarization and a functional enhancement of Ca -activated K channels. These properties, which can be recapitulated by chronic inhibition of M-current in control neurons, facilitate a burst-suppression firing pattern that is reminiscent of the interictal electroencephalography pattern in patients. Our findings suggest that dyshomeostatic mechanisms compound KCNQ2 loss-of-function leading to alterations in the neurodevelopmental trajectory of patient iPSC-derived neurons.
ISSN:2050-084X