1 H, 13 C and 15 N assignment of the paramagnetic high potential iron-sulfur protein (HiPIP) PioC from Rhodopseudomonas palustris TIE-1

High potential iron-sulfur proteins (HiPIPs) are a class of small proteins (50-100 aa residues), containing a 4Fe-4S iron-sulfur cluster. The 4Fe-4S cluster shuttles between the oxidation states [Fe S ] , with a positive redox potential in the range (500-50 mV) throughout the different known HiPIPs....

Full description

Saved in:
Bibliographic Details
Published inBiomolecular NMR assignments Vol. 14; no. 2; p. 211
Main Authors Trindade, Inês B, Invernici, Michele, Cantini, Francesca, Louro, Ricardo O, Piccioli, Mario
Format Journal Article
LanguageEnglish
Published Netherlands 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High potential iron-sulfur proteins (HiPIPs) are a class of small proteins (50-100 aa residues), containing a 4Fe-4S iron-sulfur cluster. The 4Fe-4S cluster shuttles between the oxidation states [Fe S ] , with a positive redox potential in the range (500-50 mV) throughout the different known HiPIPs. Both oxidation states are paramagnetic at room temperature. HiPIPs are electron transfer proteins, isolated from photosynthetic bacteria and usually provide electrons to the photosynthetic reaction-center. PioC, the HIPIP isolated from Rhodopseudomonas palustris TIE-1, is the smallest among all known HiPIPs. Despite their small dimensions, an extensive NMR assignment is only available for two of them, because paramagnetism prevents the straightforward assignment of all resonances. We report here the complete NMR assignment of H, C and N signals for the reduced [Fe S ] state of the protein. A set of double and triple resonance experiments performed with standardized parameters/datasets provided the assignment of about 72% of the residues. The almost complete resonance assignment (99.5% of backbone and ca. 90% of side chain resonances) was achieved by combining the above information with those obtained using a second set of NMR experiments, in which acquisition and processing parameters, as well as pulse sequences design, were optimized to account for the peculiar features of this paramagnetic protein.
ISSN:1874-270X