Nanoparticle drug delivery characterization for fluticasone propionate and in vitro testing 1
Glucocorticoids, such as fluticasone propionate (FP), are used for the treatment of inflammation and alleviation of nasal symptoms and allergies, and as an antipruritic. However, both short- and long-term therapeutic use of glucocorticoids can lead to muscle weakness and atrophy. In the present stud...
Saved in:
Published in | Canadian journal of physiology and pharmacology p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
17.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Glucocorticoids, such as fluticasone propionate (FP), are used for the treatment of inflammation and alleviation of nasal symptoms and allergies, and as an antipruritic. However, both short- and long-term therapeutic use of glucocorticoids can lead to muscle weakness and atrophy. In the present study, we evaluated the feasibility of the nanodelivery of FP with poly(dl-lactide-co-glycolide) (PLGA) and tested in vitro function. FP-loaded PLGA nanoparticles were prepared via nanoprecipitation and morphological characteristics were studied via scanning electron microscopy. FP-loaded nanoparticles demonstrated an encapsulation efficiency of 68.6% ± 0.5% with a drug loading capacity of 4.6% ± 0.04%, were 128.8 ± 0.6 nm in diameter with a polydispersity index of 0.07 ± 0.008, and displayed a zeta potential of -19.4 ± 0.7. A sustained in vitro drug release pattern was observed for up to 7 days. The use of fluticasone nanoparticle decreased lipopolysaccharide (LPS)-induced lactate dehydrogenase release compared with LPS alone in C2C12 treated cells. FP also decreased expression of LPS-induced inflammatory genes in C2C12 treated cells as compared with LPS alone. Taken together, the present study demonstrates in vitro feasibility of PLGA-FP nanoparticle delivery to the skeletal muscle cells, which may be beneficial for treating inflammation. |
---|---|
ISSN: | 1205-7541 |