In Vitro Evaluation of the Remineralizing Potential and Antimicrobial Activity of a Cariostatic Agent with Silver Nanoparticles

Cariostatic treatment has been shown to successfully arrest caries. However, it blackens the carious tooth structure. This study evaluated the effects of an experimental cariostatic agent with silver nanoparticles (Ag-Nano) using microhardness (MH) and microbiological tests. The cariostatic agents t...

Full description

Saved in:
Bibliographic Details
Published inBrazilian dental journal Vol. 28; no. 6; p. 738
Main Authors Scarpelli, Beatriz Brandão, Punhagui, Marília Franco, Hoeppner, Márcio Grama, Almeida, Ricardo Sergio Couto de, Juliani, Felipe Augusto, Guiraldo, Ricardo Danil, Berger, Sandrine Bittencourt
Format Journal Article
LanguageEnglish
Published Brazil 01.11.2017
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Cariostatic treatment has been shown to successfully arrest caries. However, it blackens the carious tooth structure. This study evaluated the effects of an experimental cariostatic agent with silver nanoparticles (Ag-Nano) using microhardness (MH) and microbiological tests. The cariostatic agents tested were: Saforide®, Cariestop®, Ancarie® and Ag-Nano. Sixty-six samples from deciduous enamel were submitted to initial (after pH cycling to obtain initial caries-like lesion) and final (after cariostatic application) MH testing and %MH values were calculated. After longitudinal sectioning, internal (I) MH was evaluated. Strains of Streptococcus mutans, Escherichia coli, and Enterococcus faecalis in brain-heart infusion culture were treated with the cariostatic agents. Agar diffusion tests (ADTs) were performed and minimum inhibitory concentrations were determined. The statistical tests used were: Kruskal-Wallis and Dunn (%MD; ADT; MIC) and ANOVA followed by Tukey's test (I-MH) (p<0.05). The %MH of Saforide® was significantly greater than that of Ag-Nano (p<0.05). Internal MH showed progressive improvement in the enamel remineralization for all cariostatic tested. In ADTs showed greater inhibition of S. mutans, E. faecalis, and E. coli by Saforide® than by Ancarie® and Ag-Nano. Ag-Nano was able to inhibit 100% microorganism growth at a lower concentration than required for the other agents. It was concluded that Ag-Nano treatment promoted remineralization of deciduous tooth enamel with initial caries-like lesion and bactericidal activity.
ISSN:1806-4760