Multi sensor reanalysis of total ozone
A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR), has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instr...
Saved in:
Published in | Atmospheric chemistry and physics discussions Vol. 10; no. 4; pp. 11401 - 11448 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
28.04.2010
|
Online Access | Get full text |
Cover
Loading…
Summary: | A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR), has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instruments TOMS (on the satellites Nimbus-7 and Earth Probe), SBUV (Nimbus-7, NOAA-9, NOAA-11 and NOAA-16), GOME (ERS-2), SCIAMACHY (Envisat), OMI (EOS-Aura), and GOME-2 (Metop-A) have been used in the MSR. As first step a bias correction scheme is applied to all satellite observations, based on independent ground-based total ozone data from the World Ozone and Ultraviolet Data Center. The correction is a function of solar zenith angle, viewing angle, time (trend), and stratospheric temperature. As second step data assimilation was applied to create a global dataset of total ozone analyses. The data assimilation method is a sub-optimal implementation of the Kalman filter technique, and is based on a chemical transport model driven by ECMWF meteorological fields. The chemical transport model provides a detailed description of (stratospheric) transport and uses parameterisations for gas-phase and ozone hole chemistry. The MSR dataset results from a 30-year data assimilation run with the 14 corrected satellite datasets as input, and is available on a grid of 11[frac12] degrees with a sample frequency of 6 h for the complete time period (1978-2008). The Observation-minus-Analysis (OmA) statistics show that the bias of the MSR analyses is less than 1 percent with an RMS standard deviation of about 2 percent as compared to the corrected satellite observations used. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-1 |
ISSN: | 1680-7367 1680-7375 |