Chemical pressure induced spin reorientation in the magnetic structure ofCa3Mn2-xSnxO7(x=0,0.03,0.05)

The effect of partially substituting Tin (Sn) at the Manganese (Mn) site ofCa3Mn2O7, viz.Ca3Mn2-xSnxO7withx=0.03,0.05, on its structural and magnetic properties have been investigated using synchrotron diffraction, neutron diffraction, and bulk magnetization measurements. It is observed that with a...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 36; no. 43
Main Authors Mohan, Ashwin, S Vaidya, Salil, Jain, Anil, Yusuf, S M
Format Journal Article
LanguageEnglish
Published 26.07.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of partially substituting Tin (Sn) at the Manganese (Mn) site ofCa3Mn2O7, viz.Ca3Mn2-xSnxO7withx=0.03,0.05, on its structural and magnetic properties have been investigated using synchrotron diffraction, neutron diffraction, and bulk magnetization measurements. It is observed that with a substitution ofx=0.03, the minor (≈8%) tetragonal (I4/mmm) structural phase that is present in the predominantly orthorhombic (Cmc21) undopedCa3Mn2O7, completely disappears. The compounds order antiferromagnetically, the ordering temperature decreases with increasing Sn-content, indicating a weakening of the antiferromagnetic exchange interactions. Interestingly, in the ordered state, the spin magnetic moments which were aligned along thea-axis of the unit cell in the undoped compound, are observed to have reoriented with their major components lying in theb - cplane in the Sn-doped compounds. The above influence of Sn-doping is seen to be stemming from a significant modification of the octahedral rotation and tilt mode geometry in the unit cell, that is known to be responsible for driving ferroelectricity in these compounds.The effect of partially substituting Tin (Sn) at the Manganese (Mn) site ofCa3Mn2O7, viz.Ca3Mn2-xSnxO7withx=0.03,0.05, on its structural and magnetic properties have been investigated using synchrotron diffraction, neutron diffraction, and bulk magnetization measurements. It is observed that with a substitution ofx=0.03, the minor (≈8%) tetragonal (I4/mmm) structural phase that is present in the predominantly orthorhombic (Cmc21) undopedCa3Mn2O7, completely disappears. The compounds order antiferromagnetically, the ordering temperature decreases with increasing Sn-content, indicating a weakening of the antiferromagnetic exchange interactions. Interestingly, in the ordered state, the spin magnetic moments which were aligned along thea-axis of the unit cell in the undoped compound, are observed to have reoriented with their major components lying in theb - cplane in the Sn-doped compounds. The above influence of Sn-doping is seen to be stemming from a significant modification of the octahedral rotation and tilt mode geometry in the unit cell, that is known to be responsible for driving ferroelectricity in these compounds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-2
ISSN:1361-648X
1361-648X
DOI:10.1088/1361-648X/ad636d