Support Engineering for the Stabilisation of Heterogeneous Pd3 P-Based Catalysts for Heck Coupling Reactions
Herein we report the use of a supported Pd3 P catalyst for Heck coupling reactions. For the stabilisation of Pd3 P and Pd, as reference system, the silica support material was modified via phosphorus doping (0.5 and 1 wt % P). Through this so-called support engineering approach, the catalytic activi...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 1; p. e202302825 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
02.01.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | Herein we report the use of a supported Pd3 P catalyst for Heck coupling reactions. For the stabilisation of Pd3 P and Pd, as reference system, the silica support material was modified via phosphorus doping (0.5 and 1 wt % P). Through this so-called support engineering approach, the catalytic activity of Pd3 P was clearly enhanced. Whereas an iodobenzene conversion of 79 % was witnessed for Pd3 P@SiO2 in the coupling of styrene and iodobenzene in 1 h, 90 % conversion could be achieved using Pd3 P@1P-SiO2 . This improved catalytic activity probably stems from an electronic modulation of the support surface via the introduction of phosphorus. Simultaneously, the recyclability was boosted and the Pd3 P@1P-SiO2 catalyst has shown to maintain its catalytic activity over several recovery tests. Hereby, metal leaching could almost be suppressed completely to 3 % by the use of a P-modified silica support. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-2 |
ISSN: | 1521-3765 |
DOI: | 10.1002/chem.202302825 |