Strain-Release Driven Epoxidation and Aziridination of Bicyclo1.1.0butanes via Palladium Catalyzed σ-Bond Nucleopalladation

The development of preparative methods for the synthesis of four-membered carbocycles is gaining increasing importance due to the widespread utility of cyclic compounds in medicinal chemistry. Herein, we report the development of a new methodology for the production of spirocyclic epoxides and aziri...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 7; p. e202217064
Main Authors Wölfl, Bernhard, Winter, Nils, Li, Jiajing, Noble, Adam, Aggarwal, Varinder K
Format Journal Article
LanguageEnglish
Published 06.02.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of preparative methods for the synthesis of four-membered carbocycles is gaining increasing importance due to the widespread utility of cyclic compounds in medicinal chemistry. Herein, we report the development of a new methodology for the production of spirocyclic epoxides and aziridines containing a cyclobutane motif. In a two-step one-pot process, a bicyclo[1.1.0]butyl sulfoxide is lithiated and added to a ketone, aldehyde or imine, and the resulting intermediate is cross-coupled with an aryl triflate through C-C σ-bond alkoxy- or aminopalladation with concomitant epoxide or aziridine formation. After careful optimization, a remarkably efficient reaction was conceived that tolerated a broad variety of both aromatic and aliphatic substrates. Lastly, through several high yielding ring-opening reactions, we demonstrated the excellent applicability of the products as modular building blocks for the introduction of three-dimensional structures into target molecules.The development of preparative methods for the synthesis of four-membered carbocycles is gaining increasing importance due to the widespread utility of cyclic compounds in medicinal chemistry. Herein, we report the development of a new methodology for the production of spirocyclic epoxides and aziridines containing a cyclobutane motif. In a two-step one-pot process, a bicyclo[1.1.0]butyl sulfoxide is lithiated and added to a ketone, aldehyde or imine, and the resulting intermediate is cross-coupled with an aryl triflate through C-C σ-bond alkoxy- or aminopalladation with concomitant epoxide or aziridine formation. After careful optimization, a remarkably efficient reaction was conceived that tolerated a broad variety of both aromatic and aliphatic substrates. Lastly, through several high yielding ring-opening reactions, we demonstrated the excellent applicability of the products as modular building blocks for the introduction of three-dimensional structures into target molecules.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-2
ISSN:1521-3773
1521-3773
DOI:10.1002/anie.202217064