Structural complexities and sodium-ion diffusion in the intercalates Na x TiS2: move it, change it, re-diffract it
After momentary attention as potential battery materials during the 1980s, sodium titanium disulphides, like the whole Na-Ti-S system, have only been investigated in a slapdash fashion. While they pop up in current reviews on the very subject time and again, little is known about their actual crysta...
Saved in:
Published in | RSC advances Vol. 9; no. 48; p. 27780 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
03.09.2019
|
Online Access | Get full text |
ISSN | 2046-2069 2046-2069 |
DOI | 10.1039/c9ra05690d |
Cover
Summary: | After momentary attention as potential battery materials during the 1980s, sodium titanium disulphides, like the whole Na-Ti-S system, have only been investigated in a slapdash fashion. While they pop up in current reviews on the very subject time and again, little is known about their actual crystal-structural features and sodium-ion diffusion within them. Herein, we present a short summary of literature on the Na-Ti-S system, a new synthesis route to Na0.5TiS2-3R 1, and results of high-temperature X-ray and neutron diffractometry on this polytype, which is stable for medium sodium content. Based thereon, we propose a revision of the crystal structure reported in earlier literature (missed inversion symmetry). Analyses of framework topology, probability-density functions, and maps of the scattering-length density reconstructed using maximum-entropy methods (all derived from neutron diffraction) reveal a honeycomb-like conduction pattern with linear pathways between adjacent sodium positions; one-particle potentials indicate associated activation barriers of ca. 0.1 eV or less. These findings are complemented by elemental analyses and comments on the high-temperature polytype Na0.9TiS2-2H. Our study helps to get a grip on structural complexity in the intercalates Na x TiS2, caused by the interplay of layer stacking and Na-Ti-vacancy ordering, and provides first experimental results on pathways and barriers of sodium-ion migration.After momentary attention as potential battery materials during the 1980s, sodium titanium disulphides, like the whole Na-Ti-S system, have only been investigated in a slapdash fashion. While they pop up in current reviews on the very subject time and again, little is known about their actual crystal-structural features and sodium-ion diffusion within them. Herein, we present a short summary of literature on the Na-Ti-S system, a new synthesis route to Na0.5TiS2-3R 1, and results of high-temperature X-ray and neutron diffractometry on this polytype, which is stable for medium sodium content. Based thereon, we propose a revision of the crystal structure reported in earlier literature (missed inversion symmetry). Analyses of framework topology, probability-density functions, and maps of the scattering-length density reconstructed using maximum-entropy methods (all derived from neutron diffraction) reveal a honeycomb-like conduction pattern with linear pathways between adjacent sodium positions; one-particle potentials indicate associated activation barriers of ca. 0.1 eV or less. These findings are complemented by elemental analyses and comments on the high-temperature polytype Na0.9TiS2-2H. Our study helps to get a grip on structural complexity in the intercalates Na x TiS2, caused by the interplay of layer stacking and Na-Ti-vacancy ordering, and provides first experimental results on pathways and barriers of sodium-ion migration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-2 |
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c9ra05690d |