Overview of Proposed ISRU Technology Development

ISRU involves any hardware or operation that harnesses and utilizes in-situ resources (natural and discarded) to create products and services for robotic and human exploration: Assessment of physical, mineral chemical, and volatile water resources, terrain, geology, and environment (orbital and loca...

Full description

Saved in:
Bibliographic Details
Published inNASA Center for AeroSpace Information (CASI). Misc. Resources
Main Authors Linne, Diane, Sanders, Jerry, Starr, Stan, Suzuki, Nantel, O'Malley, Terry
Format Web Resource
LanguageEnglish
Published Hampton NASA/Langley Research Center 07.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ISRU involves any hardware or operation that harnesses and utilizes in-situ resources (natural and discarded) to create products and services for robotic and human exploration: Assessment of physical, mineral chemical, and volatile water resources, terrain, geology, and environment (orbital and local). Production of replacement parts, complex products, machines, and integrated systems from feedstock derived from one or more processed resources. Civil engineering, infrastructure emplacement, and structure construction using materials produced from in situ resources. Radiation shields, landing pads, roads, berms, habitats, etc. Generation and storage of electrical, thermal, and chemical energy with in situ derived materials. Solar arrays, thermal wadis, chemical batteries, etc. ISRU is a disruptive capability: Enables more affordable exploration than todays paradigm. Allows more sustainable architectures to be developed. Understand the ripple effect in the other Exploration Elements: MAV: propellant selection, higher rendezvous altitude (higher DV capable with ISRU propellants). EDL: significantly reduces required landed mass. Life Support: reduce amount of ECLSS closure, reduce trash mass carried through propulsive maneuvers. Power: ISRU drives electrical requirements, reactant and regeneration for fuel cells for landers, rovers, and habitat backup. Every Exploration Element except ISRU has some flight heritage (power, propulsion, habitats, landers, life support, etc.) ISRU will require a flight demonstration mission on Mars before it will be included in the critical path. Mission needs to be concluded at least 10 years before first human landed mission to ensure lessons learned can be incorporated into final design. ISRU Formulation team has generated a (still incomplete) list of over 75 technical questions on more than 40 components and subsystems that need to be answered before the right ISRU system will be ready for this flight demo.
Bibliography:SourceType-Other Sources-1
content type line 65
ObjectType-Feature-1