The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and sigma super(B) regulons

We have used DNA microarrays to monitor the global transcriptional response of Bacillus subtilis to changes in manganese availability. Mn(II) leads to the MntR-dependent repression of both the mntH and mntABCD operons encoding Mn(II) uptake systems. Mn(II) also represses the Fur regulon. This repres...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 49; no. 6; pp. 1477 - 1491
Main Authors Guedon, E, Moore, C M, Que, Q, Wang, T, Ye, R W, Helmann, J D
Format Journal Article
LanguageEnglish
Published 01.09.2003
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have used DNA microarrays to monitor the global transcriptional response of Bacillus subtilis to changes in manganese availability. Mn(II) leads to the MntR-dependent repression of both the mntH and mntABCD operons encoding Mn(II) uptake systems. Mn(II) also represses the Fur regulon. This repression is unlikely to be a direct effect of Mn(II) on Fur as repression is sensitive to 2,2'-dipyridyl, an iron-selective chelator. We suggest that elevated Mn(II) displaces iron from cellular-binding sites and the resulting rise in free iron levels leads to repression of the Fur regulon. Many of the genes induced by Mn(II) are activated by sigma super(B) or TnrA. Both of these regulators are controlled by Mn(II)-dependent enzymes. Induction of the sigma super(B)-dependent general stress response by Mn(II) is largely dependent on RsbU, a Mn(II)-dependent phosphatase that dephosphorylates RsbV, ultimately leading to release of active sigma super(B) from its antisigma, RsbW. The activity of TnrA is inhibited when it forms an inactive complex with feedback-inhibited glutamine synthetase. Elevated Mn(II) reduces the sensitivity of glutamine synthetase to feedback inhibitors, and we suggest that this leads to the observed increase in TnrA activity. In sum, three distinct mechanisms can account for most of the transcriptional effects elicited by manganese: (i) direct binding of Mn(II) to metalloregulators such as MntR, (ii) perturbation of cellular iron pools leading to increased Fur activity and (iii) altered activity of Mn(II)-dependent enzymes that regulate the activity of sigma super(B) and TnrA.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-1
ISSN:0950-382X
DOI:10.1046/j.1365-2958.2003.03648.x